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ABSTRACT

The point spread function obtainable in an astronomical instrument using CCD readout is
limited by a number of factors, among them the lateral diffusion of charge before it is collected in
the potential wells. We study this problem both theoretically and experimentally, with emphasis
on the thick CCDs on high-resistivity n-type substrates being developed at Lawrence Berkeley
National Lab.

Subject headings: CCD, high resistivity, fully depleted, astronomical, Lick Observatory, Lawrence Berke-
ley National Laboratory

1. Introduction

CCD image sensors of novel design for appli-
cations in astronomy are being developed and
tested at Lawrence Berkeley National Lab (LBNL)
and Lick Observatory (UCO/Lick) (Holland et al.
1996; Stover et al. 1999). The devices are fab-
ricated on high-resistivity, n-type substrates and
are back illuminated. In normal operation, a sub-
strate bias voltage applied to the back-side con-
tact results in full depletion of the 300 µm thick
substrate. This is in contrast to previous deep-
depletion CCDs with typically 50 µm thick deple-
tion regions (Burke et al. 1997, 1994, 1991; Ka-
masz et al. 1994; Tsoi et al. 1985). The depletion
voltage is relatively low (<∼ 20 V) due to the high
resistivity of the starting silicon (≈ 10,000 Ω-cm
which corresponds to a substrate doping density
ND in the mid-1011 cm−3 range).

A concern for such CCDs is spreading via dif-
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fusion of the photogenerated charge during the
transit from the back side of the device, where
short-wavelength light is absorbed, to the CCD
potential wells located nearly 300 µm away. In
this paper we extend the theoretical analysis of an
earlier study (Holland et al. 1997) of the charge
spreading issue, and present new measurements,
obtained with a pinhole mask in contact with a
2048 × 2048 (15 µm)2 pixel back-illuminated de-
vice. Exposures to blue light were made at differ-
ent bias voltages. While voltages too low for total
depletion are not recommended for normal oper-
ation, data obtained under such conditions yields
useful model parameters.

2. One-dimensional approximation

We consider the electric fields in a partially- or
fully-depleted CCD fabricated on a high-resistivity
n-type substrate. Except near the gate structure
(on the scale of a pixel width) the electric field
in the substrate can be regarded as a function
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of z alone, where z is the coordinate normal to
the plane of the CCD. The field distribution can
be obtained from the analysis of a simple overde-
pleted CCD structure, as was done by Holland et
al. (1997), who obtained

E(z) = Emin +
qND

εSi
z , (1)

where the electric field at z = 0 is given by

Emin =
(

Vsub − VJ

zJ
− 1

2
qND

εSi
zJ

)
. (2)

We have chosen to measure z from the back sur-
face of the CCD to expedite diffusion calculations,
although the choice is inappropriate for potential
calculations. Here q is the electronic charge, ND

is the donor atom density in the depleted region,
and εSi is the permittivity of silicon (about 11.7ε0).
Vsub is the substrate bias voltage, and VJ is essen-
tially the voltage at the p–n junction, at z = zJ .
The voltage drop across the drift region, Vsub−VJ ,
is assumed to be larger than the depletion voltage,
qNDz2

J/2εSi.
If this is not the case,

E(z) =
{

(qND/εSi)(z − zff ) if z > zff

0 otherwise .
(3)

The boundary between the field-free and depleted
regions is at z = zff and is obtained from the
condition E(zff ) = 0, which yields

zJ − zff =
√

(2εSi/qND)(Vsub − VJ ) (4)

for the thickness of the depletion region. For the
special case zff = 0 (barely depleted), it can be
checked that Eq. 4 implies Emin = 0 in Eq. 2.
These fields are sketched in Figure 1.

Equations 1–4 were derived from a one-dimen-
sional analysis. For CCDs on high-resistivity
silicon the potentials are strongly two-dimen-
sional (Burke et al. 1994; McCann et al. 1980).
A region exists below the buried channel implant
where the field is significantly larger than E(zJ )
given by Eq. 1. Figure 2 shows a two-dimensional
simulation of one pixel of a high-resistivity CCD.
As shown, the potential varies strongly under the
collection electrode, and the field at zJ is much
greater than predicted by Eq. 1. As a practical
matter, charge spreading in the high-field region
is negligible and Eqs. 1 and 2 can still be used,

but VJ is not the potential at the junction but at
the point where the field deviates from Eq. 1. Ac-
cording to this analysis, the thickness of the drift
region will be less than zJ by about 5–10 µm.
These quantities are distinguished by primes in
Figure 2, but the distinction will be dropped in
the following sections.

3. Continuity equation

For a p-channel device in which recombination
is unimportant, the hole density is given by

Dp∇2p− µp∇(pE) + Gp =
∂p

∂t
, (5)

where Dp and µp are the hole diffusion constant
and mobility and Gp is the hole generation rate
(Shockley 1950). In the following discussion the
Einstein relation Dp/µp = kT/q is occasionally
employed.

For our present purposes we take Gp =
δ(x)δ(y)δ(z)δ(t), that is, a point source of blue
light at t = 0.2,3 Then everywhere but at the
δ-function source, and with E = (0, 0, E(z)), we
have

Dp∇2p− µp
∂

∂z
(p Ez) ≡ −∇j =

∂p

∂t
, (6)

where we find it convenient to define the probabil-
ity current density j = −Dp∇p + µppE.4

Holes encountering the back surface of a fully-
active CCD are diffusely reflected, and there is no
current across the z = 0 boundary: jz(x, y, 0, t) =
0. At the junction near the potential wells (z =
zJ) the hole density vanishes: p(x, y, zJ , t) = 0.

It may be verified directly that the solution

p =
1√

2π 2Dpt
e−(x2+y2)/4Dpt g(z, t) (7)

satisfies the boundary conditions, with the “longi-
tudinal function” g(z, t) satisfying

∂

∂z

(
Dp

∂g

∂z
− gE(z)

)
=

∂g

∂t
(8)

2It is not difficult to replace δ(z) by δ(z − zs) and integrate
over a distributed source distribution, as should be done
for red light, but there is not enough room in the margin
of this report.

3In practice photons produce electron/hole pairs “one at
a time,” and space-charge effects are not important. We
interpret p as the probability density function for the charge
distribution.

4Multiply by q to get a conventional current density.
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Fig. 1.— Electric fields in a thick CCD substrate
for different back-surface bias potentials. In the
underdepleted case the field is zero for z < zff and
rises linearly with slope ND/εSi to Emax at the p-n
junction. If the bias potential is large enough the
field starts at Emin ≥ 0 at the back surface.
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Fig. 2.— Simulated potential distribution for a
15 µm pixel. The substrate doping was 6 × 1011

cm−3 and the buried-channel implant dose was
1.5 × 1012 cm−2. WARNING: The labeled axis
measure z from the front of the CCD, in distinc-
tion to practice elsewhere in this paper.

and the boundary conditions g(zJ , t) = 0 and
∂g/∂z|z=0 = 0.

We make a simple observation from Eq. 7 which
will be used repeatedly in this paper:

The charge being collected by the po-
tential wells at a given time t has
a Gaussian lateral distribution with
standard deviation σ =

√
2Dpt.

Our desired solution (the PSF) is the nor-
mal component of the probability current density
at this surface, jz(x, y, zJ , t) = −∂p/∂z|zJ , inte-
grated over time:

f(x, y) =
∫ ∞

0

jz(x, y, zJ , t)dt (9)

=
∫ ∞

0

−∂g

∂z

∣∣∣∣
z=zJ

1
2π 2Dpt

e−(x2+y2)/4Dpt dt

4. Diffusion in a depleted CCD

We assume that the CCD is overdepleted, so
that Emin > 0, and temporarily neglect longitudi-
nal diffusion. All charges then arrive at the same
time, and hence distribute radially as a Gaussian
according to Eq. 7. The mean transit time may be
calculated by integrating dz/v(z), where the drift
velocity v(z) is µpE(z) for electric fields below the
velocity saturation limit. In the present case

v(z) = µp

(
Emin +

qND

εSi
z

)
, (10)

from which we obtain the variance in x (or y),

σ2
d = 2Dpt = 2

kT

q

εSi

qND
ln

Emax

Emin
. (11)

At high fields Emin ≈ Emax, and one may expand
the above expression to obtain the asymptotic re-
sult

σ2
asymp = 2

kT

q

z2
J

Vsub − VJ
. (12)

From this we observe that in the overdepleted case
the PSF width scales linearly with the wafer thick-
ness, as the square root of temperature, and in-
versely as the square root of the applied voltage
(very nearly the substrate voltage).

If the substrate is just barely depleted or under-
depleted, then Emin = 0 and Eq. 11 is divergent.
This is to be expected, since we have neglected
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longitudinal diffusion. The charges are produced
in a field-free region, and in this approximation
take infinite time to get out. We will deal with
this problem later.

But how serious is our neglect of longitudinal
diffusion in the overdepleted case? An almost-
solution provides insight. If Ez(z) is replaced by
its average value Ec in Eq. 6, then a solution which
satisfies the boundary condition at t = 0 is

g(z, t) =

√
1

4πDpt
e−(z−vct)2/4Dpt (13)

where vc = µpEc. The boundary condition
g(zJ , t) = 0 is satisfied only for times sufficiently
small that the tail of the distribution do not yet
reach the boundary at z = zJ , i.e., roughly for
t < zJ/vc. The picture is simple: the δ-function
distribution at the back surface at t = 0 grows
into a Gaussian distribution in three dimensions,
with σ =

√
2Dpt, whose centroid moves with ve-

locity vc. The expanding ball of charge reaches
the potential wells over a fractional transit time
σd/zJ . If this fraction is small compared with
unity (as it turns out to be), then our Gaussian
approximation for the lateral distribution is valid.

5. Resolution dominated by diffusion in a
field-free region

At low bias voltages for the LBNL CCDs and
nearly always for thinned CCDs, the substrate
is not fully depleted. For most optical wave-
lengths and in particular for the blue, light is ab-
sorbed very close to the back surface, and carri-
ers freely diffuse through the undepleted substrate
until they cross the interface, encounter an elec-
tric field, and travel to the CCD potential wells.
As mentioned above, recombination may be ne-
glected for the cases being considered. We con-
sider a point source of charge carriers at the rear
surface of a CCD with a field-free thickness zff .
Carriers are reflected from the rear surface (at
least for the LBNL case), so the problem is equiv-
alent to one with the photoionization source with
twice the intensity at the center of the field-free
substrate with thickness 2zff . It is sufficient to
consider the steady-state solution to the problem,
so that Eq. 5 reduces to Laplace’s equation ex-
cept for the δ-function at the origin. We recog-
nize this as equivalent to the potential problem in
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u = ρ/zff  or  ξ = x/zff

Gaussian with same half
max as q(ξ) (σ = 0.7271)

0.5 × charge fraction
inside circle of radius u

Q(u) q(ξ)

Half-max at
ξ1/2 = 0.8384

Fig. 3.— The radial charge distribution Q(u) and
marginal distribution q(ξ) (solid curves). The scaled
variables are u = ρ/zff , where zff is the thickness of
the field-free (undepleted) region and ρ =

p
x2 + y2,

and ξ = x/zff . With the extension q(−ξ) = q(ξ), the
variance of q(ξ) is 1. The distributions are normalized
so that

R∞
0

Q(u)2πudu = 1 and
R∞
−∞ q(ξ)dξ = 1.

which a charge is equidistant between two earthed
planes at z = ±zff (Hopkinson 1983). In this case
the gradient at the plane is normal and gives the
electric field, which is in turn proportional to the
charge density on the plate. This is a well-studied
problem. In particular, Jackson (Jackson 1990)
gives two solutions, in his problems 3.17(b) and
3.18(b). For unit total charge on each plane (two
negative unit charges at the origin) the charge dis-
tribution in the potential problem is exactly equal
to the hole distribution at the potential wells in
our diffusion problem. We obtain

Q(u) =
1
2π

∫ ∞

0

dk
kJ0(ku)
cosh k

(14)

= −1
2

∞∑
m=1

(−1)m(2m− 1)K0

(
(m− 1

2 )πu
)

,

where Jn is the Bessel function regular at the ori-
gin, Kn is the modified Bessel function which is 0
at infinity, u = ρ/zff , and ρ =

√
x2 + y2. This

corresponds to Hopkinson’s zs = d case (Hopkin-
son 1987).

The integral form converges rapidly for small u,
and only a few terms in the summation given in the
second form are necessary for larger arguments.
For example, 7-place accuracy is obtained with 8
terms for x > 0.5, while only 2 terms are nec-
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essary for x > 2. We have therefore used both
forms to compute Q(u), which is shown in Fig-
ure 3. With the function normalized as above,
to give a unit charge when integrated over the
plane, the amplitude at the origin is a pure num-
ber, 0.29156090. . . (Gradshteyn & Ryzhik (1965)
3.521.2).

The marginal distribution

q(ξ) = q(−ξ) = 2
∫ ∞

0

Q
(√

ξ2 + η2
)

dη (15)

is more relevant to most of our applications; e.g.,
one calculates the x moments of a PSF. Here
ξ = x/zff and η = y/zff . Half of this function
is shown in Figure 3. q(0) = 0.5 and

〈
ξ2

〉
= 1.

The latter statement is important: the rms in
the x or y direction is equal to the thickness
of the field-free region. This verifies a conjec-
ture by Janesick based on a Monte Carlo sim-
ulation (Janesick 1985). The tails of the dis-
tribution are much higher than in the Gaussian
case. A Gaussian fit to the central region produces
σ = 0.8384zff , not zff , and 13% of the charge lies
outside a radius of 2zff .

The behavior is shown in an extreme case
(zff = 84 µm) in Figure 4, which shows the pro-
jected x distribution (in 15 µm pixels) for a pinhole
image, obtained with a substrate bias of 7.5 V. The
width of the solid curve, adjusted visually for a
reasonable fit, corresponds to zff = 90 µm. The
difference is easily consistent with our uncertainty
in zJ and other parameters.

The analysis of Section 2 can also be applied to
normal thinned n-channel CCDs, although greater
caution must be taken because the dimensions of
the sensitive region are not large compared with
the pixel size. In such cases there is no substrate
bias, but typically VJ ≈ 20 V. A one-dimensional
calculation indicates that the thickness of the de-
pleted region ranges from 8 to 18 µm as the resis-
tivity of the material is varied from 20 to 100 Ω-
cm. In general the field does not reach the back
surface, and zff can be >∼ 10 µm.

This section extends and substantially corrects
the discussion of Holland et al. (1997).

6. Resolution if diffusion in field-free and
depleted regions are comparable

What if we are dealing with a partially depleted
CCD in which neither diffusion in the field-free
region or diffusion in the depleted region domi-
nates the PSF? We have already observed that all
charges with the same collection time contribute
to the same (Gaussian) distribution. In this case
there are two processes, diffusion in a region with
E = 0, and diffusion of charges drifting under the
influence of an electric field in the z direction. In
the second case we have ignored longitudinal diffu-
sion, which dominates near the depletion bound-
ary, and our expression for σd is divergent.

Suppose we divide the substrate into two re-
gions, with the boundary just inside the depleted
region. In the first region we neglect the electric
field, and in the second longitudinal diffusion. In
both cases we overestimate the transit time, and
hence the resolution contribution. However, if we
choose the boundary which gives the smallest sum
of the variances, we will have found the minimum
combined resolution, and thus the variance closest
to reality.

This procedure is illustrated in Figure 5 for a
case of experimental interest. At this substrate
bias (15.4 V) the substrate is not fully depleted;
this will occur at about 17.5 V. We plot the two
variances as a function of distance from the deple-
tion boundary. The variance σ2

d for the depleted
region is singular at the boundary, but falls with
distance into the region, at first quite rapidly. The
field-free variance σ2

ff grows quadratically. The
flat minimum of the total variance occurs 2.3 µm
from the boundary. While the result is still an
overestimate, the algorithm clearly provides a rea-
sonable way to find the combined variance because
only one process dominates in most of each region.
The PSF itself must be found by convoluting the
Gaussian with variance σ2

d with the non-Gaussian
distribution with variance ≈ (17 µm)2 from diffu-
sion in the (slightly extended) field-free region.

7. Experimental results

Charge diffusion has been characterized by
imaging a pinhole mask consisting of small open-
ings etched in a chrome layer on a quartz substrate
that was placed directly on a back-illuminated
2048 × 2048 (15 µm)2 pixel LBNL CCD. The
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Fig. 4.— Marginal distributions of one pinhole
image at a bias of Vsub = 7.5 V. The comparison
distribution is from Figure 3.
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8, 4, and 2 µm square holes were arranged as a
hexagonal array with 60 pixel spacing.5 A narrow
bandpass filter centered at 400 nm transmitted
light which was absorbed within 0.1–0.2 µm from
the back surface.

In this preliminary analysis, subframes each
containing one almost-centered pinhole image
were first surfaced on the basis of edge infor-
mation. The first two moments of the x and y
projections were then calculated to obtain the
variances. Since the rms image widths varied by
a factor of more than ten as the substrate bias
voltage was changed, the width of the windows
used to calculate the moments was also scaled.
When the CCD was totally depleted (Vsub

>∼ 18 V)
the rms width of an image was less than a pixel
size. σpixel = 1/

√
12 × 15 µm was subtracted in

quadrature from the measured rms deviation in
an attempt to correct for undersampling. Fig-
ure 6 shows the results obtained in this way as a
function of substrate bias voltage.

To calculate the expected resolution, one needs
to know VJ and ND. These can be extracted
from the data with the help of Eq. 4. A plot
of (zJ − zff )2 as a function of Vsub is shown in
Figure 7. In the low-Vsub region where field-free
diffusion dominates, one should expect a straight
line with slope inversely proportional to ND and
intercept VJ at (zJ − zff)2 = 0. The fit parame-
ters shown in the figure are used to draw the the-
oretical curves shown in Figure 6, with the aid of
Eqns. 11, 12, and 4. The solid curve for the com-
bined resolution is obtained using the algorithm
discussed in Sec. 6.

While the theory and data are in reasonable
agreement, it is believed that this algorithm did
not adequately correct for undersampling when
the rms width was substantially less than a pixel
size. Improvements in the algorithm have been
suggested and will be implemented in the near
future.
Note added in proof: Using the first form of Eq. 14,
Eq. 15 can be integrated with the aid of Grad-
shteyn & Ryzhik (1965) 6.567.17 and 3.981.3 to
obtain

q(x) =
1

2zff coshπx/2xff
. (16)

5It would be better to make the spacing incommensurate
with pixel spacing and to randomize the positions.

This is the q(z/zff) shown in Fig. 4 (where ξ =
z/zff), which was previously obtained by numer-
ical integration. The corresponding modulation
transfer function (MTF) is

MTF(k) =
1√

2π cosh k
, (17)

where k is the spatial frequency. A future pub-
lication will elaborate the consequences of these
results.

REFERENCES

Burke, B. E. et al. 1991, IEEE Trans. Elect. Dev.
38, 1069

Burke, B. E., Mountain, R. W., Daniels, P. J.,
Cooper, M. J., & Dolat, V. S. 1994, IEEE
Trans. Nucl. Sci. 41, 375

Burke, B. E. et al. 1997, IEEE Trans. Elect. Dev.
44(10), 1633

Gradshteyn, I. S., & Ryzhik, I. M. 1965, Table
of Integrals, Series, and Products, trans. Alan
Jeffrey, Academic Press

Holland, S. E. et al. 1997, Proc. 1997 IEEE Work-
shop on Charge-Coupled-Devices and Advanced
Image Sensors, Bruges, Belgium, June 5–7

Holland, S. E., et al. 1996, IEDM Tech. Digest,
911

Holland, S. E., Wang, N. W., & Moses, W. W.
1997, IEEE Trans. Nucl. Sci. 44, 443-447

Hopkinson, G. R. 1983, Nucl. Instrum. Meth. 216,
423

Hopkinson, G. R. 1987, Optical Engineering 26,
766

Jackson, J. D. 1975, Classical Electrodynamics,
2nd ed., John Wiley & Sons, New York, (1975).

Janesick, J. et al. 1985, SPIE 597, 364

Kamasz, S. R., Farrier, M. G., & Smith, C. R.
1994, SPIE 2172, 76

McCann, D. M. et al. 1980, SPIE 217, 118

Shockley, W. 1950, Electrons and Holes in Semi-
conductors, D. Van Nostrand, New York, 349

7



Stover, R. J. et al. 1999, Proc. 4th ESO Workshop
on Optical Detectors for Astronomy, Garching,
Germany, 13-16 September 1999 (these Pro-
ceedings)

Tsoi, H. Y., Ellul, J. P., King, M. I., White, J. J.,
& Bradley, W. C. 1985, IEEE Trans. Elec. Dev.
32, 1525

This 2-column preprint was prepared with the AAS LATEX
macros v5.0.

–10 0 10 20 30 40

VJ

Slope 2εSi/qND,

intercept VJ →
ND =  3.1 × 1011

VJ = –2.83+2.98 V

Substrate voltage (V)

20000

0

40000

60000

80000

(2
90

 –
 σ

)2
  (

µm
2 )

−5.46

Fig. 7.— (zJ − zff)2 as a function of Vsub, as esti-
mated from the observed rms deviation as a func-
tion of bias voltage. If diffusion in the undepleted
region dominates, this quantity should be linear
in the bias voltage, with intercept equal to the ef-
fective junction potential VJ and slope inversely
proportional to ND, the substrate doping.

8


